Plot features in adata.obsm
This example shows how to use squidpy.pl.extract()
to plot features in anndata.AnnData.obsm
.
See also
See Extract summary features for computing an example of such features.
import squidpy as sq
adata = sq.datasets.slideseqv2()
adata
Out:
AnnData object with n_obs × n_vars = 41786 × 4000
obs: 'barcode', 'x', 'y', 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_50_genes', 'pct_counts_in_top_100_genes', 'pct_counts_in_top_200_genes', 'pct_counts_in_top_500_genes', 'total_counts_MT', 'log1p_total_counts_MT', 'pct_counts_MT', 'n_counts', 'leiden', 'cluster'
var: 'MT', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts', 'n_cells', 'highly_variable', 'highly_variable_rank', 'means', 'variances', 'variances_norm'
uns: 'cluster_colors', 'hvg', 'leiden', 'leiden_colors', 'neighbors', 'pca', 'spatial_neighbors', 'umap'
obsm: 'X_pca', 'X_umap', 'deconvolution_results', 'spatial'
varm: 'PCs'
obsp: 'connectivities', 'distances', 'spatial_connectivities', 'spatial_distances'
In this dataset, we have saved deconvolution results in anndata.AnnData.obsm
and we
would like to plot them with squidpy.pl.spatial_scatter()
.
adata.obsm["deconvolution_results"].head(10)
Squidpy provides an easy wrapper that creates a temporary copy of the
feature matrix and pass it to anndata.AnnData.obs
.
sq.pl.spatial_scatter(
sq.pl.extract(adata, "deconvolution_results"),
shape=None,
color=["Astrocytes", "Mural", "CA1_CA2_CA3_Subiculum"],
size=4,
)

Total running time of the script: ( 0 minutes 18.491 seconds)
Estimated memory usage: 496 MB