squidpy.im.ImageContainer.interactive
- ImageContainer.interactive(adata, spatial_key='spatial', library_key=None, library_id=None, cmap='viridis', palette=None, blending='opaque', symbol='disc', key_added='shapes')[source]
Launch
napari
viewer.- Parameters:
adata (
AnnData
) – Annotated data object.spatial_key (
str
) – Key inanndata.AnnData.obsm
where spatial coordinates are stored.library_key (
Optional
[str
]) – Key inadata.AnnData.obs
specifying mapping between observations and library ids. Required if the container has more than 1 Z-dimension.library_id (
Union
[str
,Sequence
[str
],None
]) – Subset of library ids to visualize. If None, visualize all library ids.cmap (
str
) – Colormap for continuous variables.palette (
Optional
[str
]) – Colormap for categorical variables inanndata.AnnData.obs
. If None, usescanpy
’s default.blending (
Literal
['opaque'
,'translucent'
,'additive'
]) – Method which determines how RGB and alpha values ofnapari.layers.Shapes
are mixed.symbol (
Literal
['disc'
,'square'
]) –Symbol to use for the spots. Valid options are:
’disc’ - circle.
’square’ - square.
key_added (
str
) –Key where to store
napari.layers.Shapes
, which can be exported by pressing SHIFT-E:anndata.AnnData.obs
['{layer_name}_{key_added}']
- boolean mask containing the selected cells.anndata.AnnData.uns
['{layer_name}_{key_added}']['meshes']
- list ofnumpy.array
, defining a mesh in the spatial coordinates.
See
napari
’s tutorial for more information about different mesh types, such as circles, squares etc.
- Return type:
TypeVar
(Interactive
)- Returns:
: Interactive view of this container. Screenshot of the canvas can be taken by
squidpy.pl.Interactive.screenshot()
.